Sejarah fisika sepanjang yang telah diketahui telah dimulai pada tahun sekitar 2400 SM, ketika kebudayaan Harappan menggunakan suatu benda untuk memperkirakan dan menghitung sudut bintang di angkasa. Sejak saat itu fisika terus berkembang sampai ke level sekarang. Perkembangan ini tidak hanya membawa perubahan di dalam bidang dunia benda, matematika dan filosofi namun juga, melalui teknologi, membawa perubahan ke dunia sosial masyarakat.
Revolusi ilmu yang berlangsung terjadi pada sekitar tahun 1600 dapat
dikatakan menjadi batas antara pemikiran purba dan lahirnyafisika klasik. Dan akhirnya berlanjut ke tahun 1900 yang menandakan mulai berlangsungnya era baru yaitu era fisika modern.
Di era ini ilmuwan tidak melihat adanya penyempurnaan di bidang ilmu
pengetahuan, pertanyaan demi pertanyaan terus bermunculan tanpa henti,
dari luasnya galaksi, sifat alami dari kondisi vakum sampai lingkungan subatomik. Daftar persoalan dimana fisikawan harus pecahkan terus bertambah dari waktu ke waktu.
Fisika AwalSejak zaman dulu, manusia terus memperhatikan bagaimana benda-benda di sekitarnya berinteraksi, kenapa benda yang tanpa disangga jatuh keb bawah, kenapa benda yang berlainan memiliki sifat yang berlainan juga, dan sebagainya. Mereka juga mengira-ira tentang misteri alam semesta, bagaimana bentuk dan posisi bumi di tengah alam yang luas ini dan bagaima sifat-sifat dari matahari dan bulan, dua benda yang memiliki posisi penting dalam kehidupan manusia purba. Secara umum, untuk menjawab pertanyaan-pertanyaan ini mereka secara mudah langsung mengaitkannya dengan pekerjaan dewa. Akhirnya, jawaban yang mulai ilmiah namun tentu saja masih terlalu berspekulasi, mulai berkembang. Tentu saja jawaban ini kebanyakan masih salah karena tidak didasarkan pada eksperimen, bagaimanapun juga dengan begini ilmu pengetahuan mulai mendapat tempatnya. Fisika pada masa awal ini kebanyakan berkembang dari dunia filosofi, dan bukan dari eksperimen yang sistematis.
Kontribusi IslamSaat itu kebudayaan didominasi oleh Kekaisaran Roma, ilmu medik dan fisika berkembang sangat pesat yang dipimpin oleh ilmuwan dan filsuf dari Yunani. Runtuhnya Kekaisaran Roma berakibat pada mundurnya perkembangan ilmu pengetahuan di dataran Eropa. Bagaimanapun juga kebudayaan di timur tengah terus berkembang pesat, banyak ilmuwan dari Yunani yang mencari dukungan dan bantuan di timur tengah ini. Akhirnya ilmuwan muslim pun berhasil mengembangkan ilmu astronomi dan matematika, yang akhirnya menemukan bidang ilmu pengetahuan baru yaitu kimia. Setelah bangsa Arab menaklukkan Persia, ilmu pengetahuan berkembang dengan cepat di Persia dan ilmuwan terus bermunculan yang akhirnya dengan giatnya memindahkan ilmu yang telah ada dari kebudayaan Yunani ke timur tengah yang saat itu sedang mundur dari Eropa yang mulai memasuki abad kegelapan.
Fisika AwalSejak zaman dulu, manusia terus memperhatikan bagaimana benda-benda di sekitarnya berinteraksi, kenapa benda yang tanpa disangga jatuh keb bawah, kenapa benda yang berlainan memiliki sifat yang berlainan juga, dan sebagainya. Mereka juga mengira-ira tentang misteri alam semesta, bagaimana bentuk dan posisi bumi di tengah alam yang luas ini dan bagaima sifat-sifat dari matahari dan bulan, dua benda yang memiliki posisi penting dalam kehidupan manusia purba. Secara umum, untuk menjawab pertanyaan-pertanyaan ini mereka secara mudah langsung mengaitkannya dengan pekerjaan dewa. Akhirnya, jawaban yang mulai ilmiah namun tentu saja masih terlalu berspekulasi, mulai berkembang. Tentu saja jawaban ini kebanyakan masih salah karena tidak didasarkan pada eksperimen, bagaimanapun juga dengan begini ilmu pengetahuan mulai mendapat tempatnya. Fisika pada masa awal ini kebanyakan berkembang dari dunia filosofi, dan bukan dari eksperimen yang sistematis.
Kontribusi IslamSaat itu kebudayaan didominasi oleh Kekaisaran Roma, ilmu medik dan fisika berkembang sangat pesat yang dipimpin oleh ilmuwan dan filsuf dari Yunani. Runtuhnya Kekaisaran Roma berakibat pada mundurnya perkembangan ilmu pengetahuan di dataran Eropa. Bagaimanapun juga kebudayaan di timur tengah terus berkembang pesat, banyak ilmuwan dari Yunani yang mencari dukungan dan bantuan di timur tengah ini. Akhirnya ilmuwan muslim pun berhasil mengembangkan ilmu astronomi dan matematika, yang akhirnya menemukan bidang ilmu pengetahuan baru yaitu kimia. Setelah bangsa Arab menaklukkan Persia, ilmu pengetahuan berkembang dengan cepat di Persia dan ilmuwan terus bermunculan yang akhirnya dengan giatnya memindahkan ilmu yang telah ada dari kebudayaan Yunani ke timur tengah yang saat itu sedang mundur dari Eropa yang mulai memasuki abad kegelapan.
Awal mula adanya ilmu fisika
Sejak
jaman purbakala, orang telah mencoba untuk mengerti sifat dari benda:
mengapa objek yang tidak ditopang jatuh ke tanah, mengapa material yang
berbeda memiliki properti yang berbeda, dan seterusnya. Lainnya adalah
sifat dari jagad raya, seperti bentuk Bumi dan sifat dari objek
celestial seperti Matahari dan Bulan.
Beberapa teori diusulkan dan banyak yang salah. Teori tersebut banyak tergantung dari istilah filosofi, dan tidak pernah dipastikan oleh eksperimen sistematik seperti yang populer sekarang ini. Ada pengecualian dan anakronisme: contohnya, pemikir Yunani Archimedes menurunkan banyak deskripsi kuantitatif yang benar dari mekanik dan hidrostatik.
Pada awal abad 17, Galileo membuka penggunaan eksperimen untuk memastikan kebenaran teori fisika, yang merupakan kunci dari metode sains. Galileo memformulasikan dan berhasil mengetes beberapa hasil dari dinamika mekanik, terutama Hukum Inert. Pada 1687, Isaac Newton menerbitkan Filosofi Natural Prinsip Matematika, memberikan penjelasan yang jelas dan teori fisika yang sukses: Hukum gerak Newton, yang merupakan sumber dari mekanika klasik; dan Hukum Gravitasi Newton, yang menjelaskan gaya dasar gravitasi. Kedua teori ini cocok dalam eksperimen. Prinsipia juga memasukan beberapa teori dalam dinamika fluid. Mekanika klasik dikembangkan besar-besaran oleh Joseph-Louis de Lagrange, William Rowan Hamilton, dan lainnya, yang menciptakan formula, prinsip, dan hasil baru. Hukum Gravitas memulai bidang astrofisika, yang menggambarkan fenomena astronomi menggunakan teori fisika.
Dari sejak abad 18 dan seterusnya, termodinamika dikembangkan oleh Robert Boyle, Thomas Young, dan banyak lainnya. Pada 1733, Daniel Bernoulli menggunakan argumen statistika dalam mekanika klasik untuk menurunkan hasil termodinamika, memulai bidang mekanika statistik. Pada 1798, Benjamin Thompson mempertunjukkan konversi kerja mekanika ke dalam panas, dan pada 1847 James Joule menyatakan hukum konservasi energi, dalam bentuk panasa juga dalam energi mekanika.
Sifat listrik dan magnetisme dipelajari oleh Michael Faraday, George Ohm, dan lainnya. Pada 1855, James Clerk Maxwell menyatukan kedua fenomena menjadi satu teori elektromagnetisme, dijelaskan oleh persamaan Maxwell. Perkiraan dari teori ini adalah cahaya adalah gelombang elektromagnetik.
Beberapa teori diusulkan dan banyak yang salah. Teori tersebut banyak tergantung dari istilah filosofi, dan tidak pernah dipastikan oleh eksperimen sistematik seperti yang populer sekarang ini. Ada pengecualian dan anakronisme: contohnya, pemikir Yunani Archimedes menurunkan banyak deskripsi kuantitatif yang benar dari mekanik dan hidrostatik.
Pada awal abad 17, Galileo membuka penggunaan eksperimen untuk memastikan kebenaran teori fisika, yang merupakan kunci dari metode sains. Galileo memformulasikan dan berhasil mengetes beberapa hasil dari dinamika mekanik, terutama Hukum Inert. Pada 1687, Isaac Newton menerbitkan Filosofi Natural Prinsip Matematika, memberikan penjelasan yang jelas dan teori fisika yang sukses: Hukum gerak Newton, yang merupakan sumber dari mekanika klasik; dan Hukum Gravitasi Newton, yang menjelaskan gaya dasar gravitasi. Kedua teori ini cocok dalam eksperimen. Prinsipia juga memasukan beberapa teori dalam dinamika fluid. Mekanika klasik dikembangkan besar-besaran oleh Joseph-Louis de Lagrange, William Rowan Hamilton, dan lainnya, yang menciptakan formula, prinsip, dan hasil baru. Hukum Gravitas memulai bidang astrofisika, yang menggambarkan fenomena astronomi menggunakan teori fisika.
Dari sejak abad 18 dan seterusnya, termodinamika dikembangkan oleh Robert Boyle, Thomas Young, dan banyak lainnya. Pada 1733, Daniel Bernoulli menggunakan argumen statistika dalam mekanika klasik untuk menurunkan hasil termodinamika, memulai bidang mekanika statistik. Pada 1798, Benjamin Thompson mempertunjukkan konversi kerja mekanika ke dalam panas, dan pada 1847 James Joule menyatakan hukum konservasi energi, dalam bentuk panasa juga dalam energi mekanika.
Sifat listrik dan magnetisme dipelajari oleh Michael Faraday, George Ohm, dan lainnya. Pada 1855, James Clerk Maxwell menyatukan kedua fenomena menjadi satu teori elektromagnetisme, dijelaskan oleh persamaan Maxwell. Perkiraan dari teori ini adalah cahaya adalah gelombang elektromagnetik.
Apel jatuh dari pohonnya
Mengapa buah apel yang lezat dan bergizi yang terlepas dari tangkainya selalu jatuh ke permukaan bumi ? ayo dijawab…
Selain mengembangkan tiga hukum tentang Gerak (Hukum I Newton, Hukum II Newton dan Hukum III Newton), eyang Newton juga menyelidiki gerakan planet-planet dan bulan. Ia selalu bertanya mengapa bulan selalu berada dalam orbitnya yang hampir berupa lingkaran ketika mengitari bumi. Selain itu, ia juga selalu mempersoalkan mengapa benda-benda selalu jatuh menuju permukaan bumi. Wililiam Stukeley, teman eyang Newton ketika masih muda, menulis bahwa ketika mereka sedang duduk minum teh di bawah pohoh apel, eyang Newton yang waktu itu masih muda dan cakep, melihat sebuah apel jatuh dari pohonnya. Dikatakan bahwa eyang Newton mendapat ilham dari jatuhnya buah apel. Menurutnya, jika gravitasi bekerja di puncak pohon apel, bahkan di puncak gunung, maka mungkin saja gravitasi bekerja sampai ke bulan. Dengan penalaran bahwa gravitasi bumi yang menahan bulan pada orbitnya, eyang Newton mengembangkan teori gravitasi yang sekarang diwariskan kepada kita.
Perlu diketahui bahwa persoalan yang dipikirkan eyang Newton ini telah ada sejak zaman yunani kuno. Ada dua persoalan dasar yang telah diselidiki oleh orang yunani, jauh sebelum eyang Newton lahir. Persoalan yang selalu dipertanyakan adalah mengapa benda-benda selalu jatuh ke permukaan bumi dan bagaimana gerakan planet-planet, termasuk matahari dan bulan (matahari dan bulan pada waktu itu digolongkan menjadi planet-planet). Orang-orang Yunani pada waktu itu melihat kedua persoalan di atas (benda yang jatuh dan gerakan planet) sebagai dua hal yang berbeda. Demikian hal itu berlanjut hingga zaman eyang Newton. Jadi apa yang dihasilkan oleh eyang dibangun di atas hasil karya orang-orang sebelum dirinya. Yang membedakan eyang Newton dan orang-orang sebelumnya adalah bahwa eyang memandang kedua persoalan dasar di atas (gerak jatuh benda dan gerakan planet) disebabkan oleh satu hal saja dan pasti mematuhi hukum yang sama. Pada abad ke-17, eyang menemukan bahwa ada interaksi yang sama yang menjadi penyebab jatuhnya buah apel dari pohon dan membuat planet tetap berada pada orbitnya ketika mengelilingi matahari. Demikian juga bulan, satu-satunya satelit alam kesayangan bumi tetap berada pada orbitnya.
Mari kita belajar hukum dasar cetusan eyang Newton yang kini diwariskan kepada kita. Hukum dasar inilah yang menentukan interaksi gravitasi. Ingat bahwa hukum ini bersifat universal alias umum; gravitasi bekerja dengan cara yang sama, baik antara diri kita dengan bumi, antara bumi dengan buah mangga yang lezat ketika jatuh, antara bumi dengan pesawat yang jatuh ;) , antara planet dengan satelit dan antara matahari dengan planet-planetnya dalam sistem tatasurya.
Oya lupa….
Tahukah anda, bahkan gagasan eyang Newton mengenai gravitasi pada mulanya dibantai habisan-habisan oleh banyak ilmuwan yang bertentangan dengan gagasannya ? Pada waktu itu, banyak ilmuwan yang mungkin saking kebingungan sulit menerima gagasan eyang Newton mengenai gaya gravitasi. Gaya gravitasi termasuk gaya tak sentuh, di mana bekerja antara dua benda yang berjauhan alias tidak ada kontak antara benda-benda tersebut. Gaya-gaya yang umumnya dikenal adalah gaya-gaya yang bekerja karena adanya kontak; gerobak sampah bergerak karena kita memberikan gaya dorong, bola bergerak karena ditendang, sedangkan gravitasi, bisa bekerja tanpa sentuhan ? aneh… eyang Newton mengatakan kepada mereka bahwa ketika apel jatuh, bumi memberikan gaya kepadanya sehingga apel tersebut jatuh, demikian juga bumi mempertahankan bulan tetap pada orbitnya dengan gaya gravitasi, meskipun tidak ada kontak dan letak bumi dan bulan berjauhan. Akhirnya, perlahan-lahan sambil bersungut-sungut mereka mulai merestui dan mendukung dengan penuh semangat Hukum Gravitasi yang dicetuskan oleh Eyang Newton :)
HUKUM GRAVITASI NEWTON
Sebelum mencetuskan Hukum Gravitasi Universal, eyang Newton telah melakukan perhitungan untuk menentukan besar gaya gravitasi yang diberikan bumi pada bulan sebagaimana besar gaya gravitasi bumi yang bekerja pada benda-benda di permukaan bumi. Sebagaimana yang kita ketahui, besar percepatan gravitasi di bumi adalah 9,8 m/s2. Jika gaya gravitasi bumi mempercepat benda di bumi dengan percepatan 9,8 m/s2, berapakah percepatan di bulan ? karena bulan bergerak melingkar beraturan (gerakan melingkar bulan hampir beraturan), maka percepatan sentripetal bulan dihitung menggunakan rumus percepatan sentripetal Gerak melingkar beraturan.
Diketahui orbit bulan yang hampir bulat mempunyai jari-jari sekitar 384.000 km dan periode (waktu yang dibutuhkan untuk melakukan satu putaran) adalah 27,3 hari. Dengan demikian, percepatan bulan terhadap bumi adalah
Jadi percepatan gravitasi bulan terhadap bumi 3600 kali lebih kecil dibandingkan dengan percepatan gravitasi bumi terhadap benda-benda di permukaan bumi. Bulan berjarak 384.000 km dari bumi. Jarak bulan dengan bumi ini sama dengan 60 kali jari-jari bumi (jari-jari bumi = 6380 km). Jika jarak bulan dari bumi (60 kali jari-jari bumi) dikuadratkan, maka hasilnya sama dengan 3600 (60 x 60 = 602 = 3600). Angka 3600 yang diperoleh dengan mengkuadratkan 60 hasilnya sama dengan Percepatan bulan terhadap bumi, sebagaimana hasil yang diperoleh melalui perhitungan.
Berdasarkan perhitungan ini, eyang newton menyimpulkan bahwa besar gaya gravitasi yang diberikan oleh bumi pada setiap benda semakin berkurang terhadap kuadrat jaraknya (r) dari pusat bumi. Secara matematis dapat ditulis sebagai berikut :
Selain faktor jarak, Eyang Newton juga menyadari bahwa gaya gravitasi juga bergantung pada massa benda. Pada Hukum III Newton kita belajar bahwa jika ada gaya aksi maka ada gaya reaksi. Ketika bumi memberikan gaya aksi berupa gaya gravitasi kepada benda lain, maka benda tersebut memberikan gaya reaksi yang sama besar tetapi berlawanan arah terhadap bumi. Karena besarnya gaya aksi dan reaksi sama, maka besar gaya gravitasi juga harus sebanding dengan massa dua benda yang berinteraksi. Berdasarkan penalaran ini, eyang Newton menyatakan hubungan antara massa dan gaya gravitasi. Secara matematis ditulis sbb :
MB adalah massa bumi, Mb adalah massa benda lain dan r adalah jarak antara pusat bumi dan pusat benda lain.
Setelah membuat penalaran mengenai hubungan antara besar gaya gravitasi dengan massa dan jarak, eyang Newton membuat penalaran baru berkaitan dengan gerakan planet yang selalu berada pada orbitnya ketika mengitari matahari. Eyang menyatakan bahwa jika planet-planet selalu berada pada orbitnya, maka pasti ada gaya gravitasi yang bekerja antara matahari dan planet serta gaya gravitasi antara planet, sehingga benda langit tersebut tetap berada pada orbitnya masing-masing. Luar biasa pemikiran eyang Newton ini. Tidak puas dengan penalarannya di atas, ia menyatakan bahwa jika gaya gravitasi bekerja antara bumi dan benda-benda di permukaan bumi, serta antara matahari dan planet-planet maka mengapa gaya gravitasi tidak bekerja pada semua benda ?
Akhirnya, setelah bertele-tele dan terseok-seok, kita tiba pada inti pembahasan panjang lebar ini. Eyang Newton pun mencetuskan Hukum Gravitasi Universal dan mengumumkannya pada tahun 1687, hukum yang sangat terkenal dan berlaku baik di indonesia, amerika atau afrika bahkan di seluruh penjuru alam semesta. Hukum gravitasi Universal itu berbunyi demikian :
Semua benda di alam semesta menarik semua benda lain dengan gaya sebanding dengan hasil kali massa benda-benda tersebut dan berbanding terbalik dengan kuadrat jarak antara benda-benda tersebut.
Secara matematis, besar gaya gravitasi antara partikel dapat ditulis sbb :
Fg adalah besar gaya gravitasi pada salah satu partikel, m1 dan m2 adalah massa kedua partikel, r adalah jarak antara kedua partikel.
G adalah konstanta universal yang diperoleh dari hasil pengukuran secara eksperimen. 100 tahun setelah eyang Newton mencetuskan hukum Gravitasi Universal, pada tahun 1978, Henry Cavendish berhasil mengukur gaya yang sangat kecil antara dua benda, mirip seperti dua bola. Melalui pengukuran tersebut, Henry membuktikan dengan sangat tepat persamaan Hukum Gravitasi Universal di atas. Perbaikan penting dibuat oleh Poyting dan Boys pada abad kesembilan belas. Nilai G yang diakui sekarang = 6,67 x 10-11 Nm2/kg2
Selain mengembangkan tiga hukum tentang Gerak (Hukum I Newton, Hukum II Newton dan Hukum III Newton), eyang Newton juga menyelidiki gerakan planet-planet dan bulan. Ia selalu bertanya mengapa bulan selalu berada dalam orbitnya yang hampir berupa lingkaran ketika mengitari bumi. Selain itu, ia juga selalu mempersoalkan mengapa benda-benda selalu jatuh menuju permukaan bumi. Wililiam Stukeley, teman eyang Newton ketika masih muda, menulis bahwa ketika mereka sedang duduk minum teh di bawah pohoh apel, eyang Newton yang waktu itu masih muda dan cakep, melihat sebuah apel jatuh dari pohonnya. Dikatakan bahwa eyang Newton mendapat ilham dari jatuhnya buah apel. Menurutnya, jika gravitasi bekerja di puncak pohon apel, bahkan di puncak gunung, maka mungkin saja gravitasi bekerja sampai ke bulan. Dengan penalaran bahwa gravitasi bumi yang menahan bulan pada orbitnya, eyang Newton mengembangkan teori gravitasi yang sekarang diwariskan kepada kita.
Perlu diketahui bahwa persoalan yang dipikirkan eyang Newton ini telah ada sejak zaman yunani kuno. Ada dua persoalan dasar yang telah diselidiki oleh orang yunani, jauh sebelum eyang Newton lahir. Persoalan yang selalu dipertanyakan adalah mengapa benda-benda selalu jatuh ke permukaan bumi dan bagaimana gerakan planet-planet, termasuk matahari dan bulan (matahari dan bulan pada waktu itu digolongkan menjadi planet-planet). Orang-orang Yunani pada waktu itu melihat kedua persoalan di atas (benda yang jatuh dan gerakan planet) sebagai dua hal yang berbeda. Demikian hal itu berlanjut hingga zaman eyang Newton. Jadi apa yang dihasilkan oleh eyang dibangun di atas hasil karya orang-orang sebelum dirinya. Yang membedakan eyang Newton dan orang-orang sebelumnya adalah bahwa eyang memandang kedua persoalan dasar di atas (gerak jatuh benda dan gerakan planet) disebabkan oleh satu hal saja dan pasti mematuhi hukum yang sama. Pada abad ke-17, eyang menemukan bahwa ada interaksi yang sama yang menjadi penyebab jatuhnya buah apel dari pohon dan membuat planet tetap berada pada orbitnya ketika mengelilingi matahari. Demikian juga bulan, satu-satunya satelit alam kesayangan bumi tetap berada pada orbitnya.
Mari kita belajar hukum dasar cetusan eyang Newton yang kini diwariskan kepada kita. Hukum dasar inilah yang menentukan interaksi gravitasi. Ingat bahwa hukum ini bersifat universal alias umum; gravitasi bekerja dengan cara yang sama, baik antara diri kita dengan bumi, antara bumi dengan buah mangga yang lezat ketika jatuh, antara bumi dengan pesawat yang jatuh ;) , antara planet dengan satelit dan antara matahari dengan planet-planetnya dalam sistem tatasurya.
Oya lupa….
Tahukah anda, bahkan gagasan eyang Newton mengenai gravitasi pada mulanya dibantai habisan-habisan oleh banyak ilmuwan yang bertentangan dengan gagasannya ? Pada waktu itu, banyak ilmuwan yang mungkin saking kebingungan sulit menerima gagasan eyang Newton mengenai gaya gravitasi. Gaya gravitasi termasuk gaya tak sentuh, di mana bekerja antara dua benda yang berjauhan alias tidak ada kontak antara benda-benda tersebut. Gaya-gaya yang umumnya dikenal adalah gaya-gaya yang bekerja karena adanya kontak; gerobak sampah bergerak karena kita memberikan gaya dorong, bola bergerak karena ditendang, sedangkan gravitasi, bisa bekerja tanpa sentuhan ? aneh… eyang Newton mengatakan kepada mereka bahwa ketika apel jatuh, bumi memberikan gaya kepadanya sehingga apel tersebut jatuh, demikian juga bumi mempertahankan bulan tetap pada orbitnya dengan gaya gravitasi, meskipun tidak ada kontak dan letak bumi dan bulan berjauhan. Akhirnya, perlahan-lahan sambil bersungut-sungut mereka mulai merestui dan mendukung dengan penuh semangat Hukum Gravitasi yang dicetuskan oleh Eyang Newton :)
HUKUM GRAVITASI NEWTON
Sebelum mencetuskan Hukum Gravitasi Universal, eyang Newton telah melakukan perhitungan untuk menentukan besar gaya gravitasi yang diberikan bumi pada bulan sebagaimana besar gaya gravitasi bumi yang bekerja pada benda-benda di permukaan bumi. Sebagaimana yang kita ketahui, besar percepatan gravitasi di bumi adalah 9,8 m/s2. Jika gaya gravitasi bumi mempercepat benda di bumi dengan percepatan 9,8 m/s2, berapakah percepatan di bulan ? karena bulan bergerak melingkar beraturan (gerakan melingkar bulan hampir beraturan), maka percepatan sentripetal bulan dihitung menggunakan rumus percepatan sentripetal Gerak melingkar beraturan.
Diketahui orbit bulan yang hampir bulat mempunyai jari-jari sekitar 384.000 km dan periode (waktu yang dibutuhkan untuk melakukan satu putaran) adalah 27,3 hari. Dengan demikian, percepatan bulan terhadap bumi adalah
Jadi percepatan gravitasi bulan terhadap bumi 3600 kali lebih kecil dibandingkan dengan percepatan gravitasi bumi terhadap benda-benda di permukaan bumi. Bulan berjarak 384.000 km dari bumi. Jarak bulan dengan bumi ini sama dengan 60 kali jari-jari bumi (jari-jari bumi = 6380 km). Jika jarak bulan dari bumi (60 kali jari-jari bumi) dikuadratkan, maka hasilnya sama dengan 3600 (60 x 60 = 602 = 3600). Angka 3600 yang diperoleh dengan mengkuadratkan 60 hasilnya sama dengan Percepatan bulan terhadap bumi, sebagaimana hasil yang diperoleh melalui perhitungan.
Berdasarkan perhitungan ini, eyang newton menyimpulkan bahwa besar gaya gravitasi yang diberikan oleh bumi pada setiap benda semakin berkurang terhadap kuadrat jaraknya (r) dari pusat bumi. Secara matematis dapat ditulis sebagai berikut :
Selain faktor jarak, Eyang Newton juga menyadari bahwa gaya gravitasi juga bergantung pada massa benda. Pada Hukum III Newton kita belajar bahwa jika ada gaya aksi maka ada gaya reaksi. Ketika bumi memberikan gaya aksi berupa gaya gravitasi kepada benda lain, maka benda tersebut memberikan gaya reaksi yang sama besar tetapi berlawanan arah terhadap bumi. Karena besarnya gaya aksi dan reaksi sama, maka besar gaya gravitasi juga harus sebanding dengan massa dua benda yang berinteraksi. Berdasarkan penalaran ini, eyang Newton menyatakan hubungan antara massa dan gaya gravitasi. Secara matematis ditulis sbb :
MB adalah massa bumi, Mb adalah massa benda lain dan r adalah jarak antara pusat bumi dan pusat benda lain.
Setelah membuat penalaran mengenai hubungan antara besar gaya gravitasi dengan massa dan jarak, eyang Newton membuat penalaran baru berkaitan dengan gerakan planet yang selalu berada pada orbitnya ketika mengitari matahari. Eyang menyatakan bahwa jika planet-planet selalu berada pada orbitnya, maka pasti ada gaya gravitasi yang bekerja antara matahari dan planet serta gaya gravitasi antara planet, sehingga benda langit tersebut tetap berada pada orbitnya masing-masing. Luar biasa pemikiran eyang Newton ini. Tidak puas dengan penalarannya di atas, ia menyatakan bahwa jika gaya gravitasi bekerja antara bumi dan benda-benda di permukaan bumi, serta antara matahari dan planet-planet maka mengapa gaya gravitasi tidak bekerja pada semua benda ?
Akhirnya, setelah bertele-tele dan terseok-seok, kita tiba pada inti pembahasan panjang lebar ini. Eyang Newton pun mencetuskan Hukum Gravitasi Universal dan mengumumkannya pada tahun 1687, hukum yang sangat terkenal dan berlaku baik di indonesia, amerika atau afrika bahkan di seluruh penjuru alam semesta. Hukum gravitasi Universal itu berbunyi demikian :
Semua benda di alam semesta menarik semua benda lain dengan gaya sebanding dengan hasil kali massa benda-benda tersebut dan berbanding terbalik dengan kuadrat jarak antara benda-benda tersebut.
Secara matematis, besar gaya gravitasi antara partikel dapat ditulis sbb :
Fg adalah besar gaya gravitasi pada salah satu partikel, m1 dan m2 adalah massa kedua partikel, r adalah jarak antara kedua partikel.
G adalah konstanta universal yang diperoleh dari hasil pengukuran secara eksperimen. 100 tahun setelah eyang Newton mencetuskan hukum Gravitasi Universal, pada tahun 1978, Henry Cavendish berhasil mengukur gaya yang sangat kecil antara dua benda, mirip seperti dua bola. Melalui pengukuran tersebut, Henry membuktikan dengan sangat tepat persamaan Hukum Gravitasi Universal di atas. Perbaikan penting dibuat oleh Poyting dan Boys pada abad kesembilan belas. Nilai G yang diakui sekarang = 6,67 x 10-11 Nm2/kg2
0 komentar:
Posting Komentar